NOAA CO-OPS Continuous Global Navigation Satellite Systems at NWLON Stations

System Design Description

Bob Heitsenrether Kevin Harrison Eric Breuer

Engineering Division
Center for Operational Oceanographic Products and Services
NOAA National Ocean Service

March 2020

Table of Contents

- 1. Introduction
- 2. System Requirements
- 3. System Design
 - 3.1. GNSS System Receiver and Antenna
 - 3.1.1. Trimble Net R9
 - 3.1.2. Trimble Alloy
 - 3.1.3. Zephyr Geodetic Antenna
 - 3.1.4. Receiver Configuration Settings
 - 3.2. Communications System
 - 3.3. Power System
 - 3.4. Cables/Connectors/Wiring
 - 3.5. Data Telemetry Scheme
- 4. References

APPENDIX A - NetR9 Specifications

APPENDIX B - Alloy Specifications

APPENDIX C - Zephyr Geodetic Antenna Specifications

APPENDIX D - Sierra RV50X modem Specifications

List of Figures

- Figure 1. cGNSS system design schematic
- Figure 2. Trimble NetR9 Receiver, front and back panels
- Figure 3. Trimble Alloy Receiver, front and back panels
- Figure 4. Top and bottom of Zephyr Geodetic II antenna
- Figure 5. SECO adapter
- Figure 6. UNAVCO configuration file options for the Trimble receiver
- Figure 7. Trimble receiver (NetR9 and Alloy) web interface home screen
- Figure 8. Trimble receiver (NetR9 and Alloy) programmatic interface home screen
- Figure 9. Listing of key settings associated with the UNAVCO standard configuration file
- Figure 10. Trimble receiver web interface tab where power configuration settings are adjusted
- Figure 11. RV50/RV50X IP modem
- Figure 12. Trimble receiver network configuration settings used for IP modem integration
- Figure 13. cGNSS station cabling and connector diagram

List of Tables

Table 1. Estimated power budget for Trimble based cGNSS field system

1. Introduction

NOAA's Center for Operational Oceanographic Products and Services (CO-OPS) is modernizing techniques for monitoring and measuring sea level sensor elevation by establishing continuous Global Navigation Satellite Systems (cGNSS) directly at National Water Level Observing Network (NWLON) stations. From June 2018 to July 2019, CO-OPS established long-term cGNSS stations at six different NWLON sites: Virginia Key, FL; Galveston, TX; Dahlgren, VA; Newport, RI; San Juan, Puerto Rico; Pensacola, FL. The purpose of this document is to describe the system design details of the cGNSS stations that CO-OPS has established to date [1-6].

This design document focuses on the following system components: GNSS receiver, GNSS antenna, power system, communications system, and data telemetry methods. Details of antenna mounting hardware used at CO-OPS installed cGNSS stations to date are not discussed here since features vary with each site. Site specific details of each station's installation can be found in field installation reports [1-6]. Also, it should be noted that antenna siting and installation methods are still a work in progress.

At the time this document was written, all of the six cGNSS field stations that have been installed by CO-OPS consist of Trimble brand components. Based on an updated review of commercial-off-the shelf available GNSS equipment, CO-OPS has recently procured several Septentrio brand GNSS systems, for future installations at NWLON sites. Familiarization, integration and testing with Septentrio components remains a work in progress. This first version of CO-OPS cGNSS system design document will focus solely on Trimble based systems. This will be an evolving document that gets revised and reissued following CO-OPS implementation of new cGNSS station components.

2. System Requirements

The following is a summary of top level cGNSS measurement requirements for CO-OPS primary applications of interest. These requirements are the foundation for the GNSS receiver configuration settings and data-telemetry schemes described in the following sections:

- Satellite data sampling rate: 30s (in part based on results in reference 7)
- Satellites tracked: GPS and GLONASS
- Raw log file size: 24 hrs (daily based on GMT time, covering 00:00:00 23:59:30)
- Data telemetry frequency: once per day
- Data files telemetered: raw .T02 files (Trimble proprietary binary format)
- Aside from physical location, the GNSS system will be standalone and independent of the NWLON system, in terms of power, data logging and telemetry, so as not to interfere with NWLON operation.
- A best attempt should be made to collocate the GNSS antenna with the NWLON stations primary water level sensor (required for data to be used for sensor stability monitoring).

Requirements associated with vertical reference measurements to be obtained via level survey are discussed in a separate document [8].

3. System Design

The schematic in figure 1 provides a high level overview of cGNSS system design for all CO-OPS installations to date. The system's primary components can be classified into 3 categories:

- 1) GNSS Measurement System: receiver, antenna
- 2) Communications: Wireless gateway modem, antenna
- 3) Power: Solar panel, batteries, charge regulator

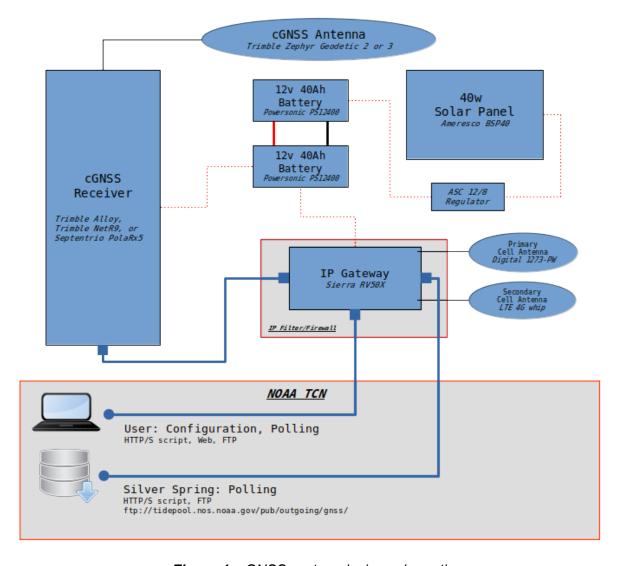


Figure 1. cGNSS system design schematic.

3.1 GNSS System Receiver and Antenna

Trimble components have been used in all CO-OPS cGNSS field stations to date. Receiver models used include both the NetR9 and Alloy. During 2018, Trimble discontinued the NetR9 model receiver and then offered the Alloy as a replacement. The Alloy is very similar to the NetR9, just with a few enhancements. All differences are relatively minor in the context of CO-OPS applications. The software, firmware and associated user interface for both receivers is close to identical. As such, only one description of receiver software configuration, relevant to both units, is documented below. Detailed technical specifications provided by the vendor for both receiver models are included as appendices A and B.

All of CO-OPS' NetR9s and Alloys are equipped with firmware versions 5.3 or higher, which includes capabilities to track GPS, GLONASS, SBAS, Galileo, BeiDou and QZSS constellations. Currently, receivers are configured to track only GPS (L1/L2/L5) and GLONASS (L1/L2/L3) signals based on requirements listed above (and in part driven by CO-OPS and NGS limited processing capabilities).

Two different types of Trimble antennas have been used across the 6 different field installations - the Zephyr Geodetic II and III. Similar to the two different model receivers, technical differences between the two antennas can be considered minimal for CO-OPS applications of interest.

3.1.1 Trimble NetR9 GNSS Receiver

Figure 2 shows annotated pictures of the front and back panels of the NetR9 receiver. The front panel offers a simple display screen and a control pad for checking system status and configuration settings in the field. Although the front panel control pad offers basic capabilities to change receiver settings, it is recommended that it is not used for this purpose. For CO-OPS applications, configuration settings should only be changed via laptop interface and the receivers web user interface or programmatic interface.

The back panel includes all receiver ports and connectors for power, communications, and GNSS antenna interface. Detailed labels are included in figure 2 and cabling is discussed in more detail in section 3.4.

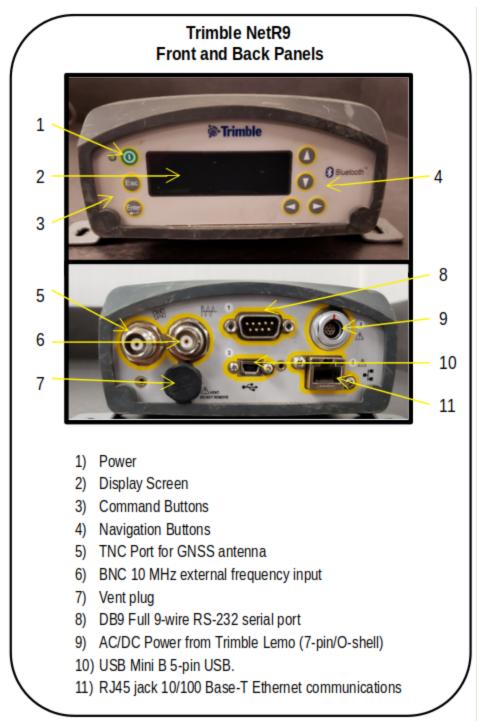


Figure 2. Trimble NetR9 Receiver, front and back panels.

Additional details on the NetR9 receiver can be found on the UNAVCO NetR9 resource page [9].

3.1.2 Trimble Alloy GNSS Receiver

Figure 3 shows annotated pictures of the front and back panels of the Alloy receiver. The Alloy was officially released as the replacement for the NetR9 during January 2018. The Alloy is essentially an updated improved version of the NetR9 with enhanced features including a ruggedized IP68 housing, modernized satellite tracking, and additional software updates that allow use as as a campaign receiver for post-processing, portable base station for Real-time Kinematic (RTK) applications, or as a scientific reference station. For all of CO-OPS GNSS applications of interest, most user interface and software configuration settings for the Alloy will be identical to those of the NetR9.

Similar to the NetR9, the front panel includes a simple display and basic control buttons. The setup of the back panel ports and connectors are slightly different than those of the NetR9 as shown in figure 3 pictures and annotations.

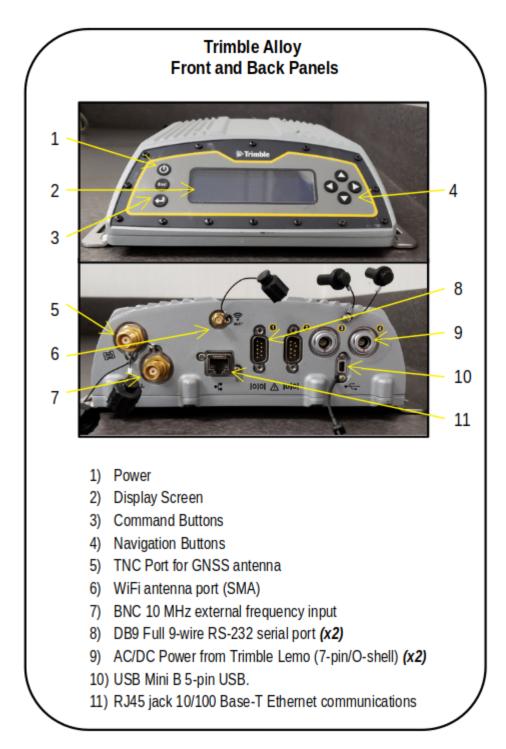


Figure 3. Trimble Alloy Receiver, front and back panels.

One noteworthy enhancement to the Alloy is the addition of a built in wifi capability. When enabled, this allows any nearby user with a PC, recognized CAC ICC, receiver encryption code, and two step verification credentials to easily connect the receivers web user interface or programmatic interface. The Alloy wifi connection provides a

convenient interface option for initial system configuration in the laboratory, or for checking the system status immediately following field installation. Before a field installed system is to be left for long term data collection, the wifi capability must be disabled to reduce power consumption.

3.1.3 Trimble Zephyr Geodetic Antennas

CO-OPS cGNSS field installations have included both Zephyr Geodetic (ZG) II and III model antennas. Similar to receivers, the ZG III is just an improved version of the ZG II. The majority of updates to the ZG III are associated with internal electronics and firmware. The external components and appearance of both models are close to identical.

The following ZG antenna features in part resulted in selection for CO-OPS applications:

- Full GNSS tracking; GPS, GLONASS, Galileo, Beidou, QZSS
- Robust low elevation satellite tracking
- Minimized multipath
- Sub-millimeter phase center to antenna reference point (ARP) calibration
- Ideal for fixed/static reference stations
- Improved signal reception in harsh signal environment
- Lightweight supports collocation with primary NWLON water level sensor

Figure 4 shows photos of the top and bottom of a Zephyr Geodetic II antenna, with key components labelled. Major features are similar on the ZG model III.

The two most important differences between the two antenna models to be addressed by the user:

- 1. Antenna type ID numbers are different. The correct ID must be selected when configuring the receiver. ID number for the ZG II is TRM55971.00 and for the ZG III is TRM115000.00.
- The vertical position between the phase center and ARP is different for each model. The vendor provided offset is printed on the back of each antenna as shown in Fig. 4. Correct selection is critical for a variety of different vertical reference applications.

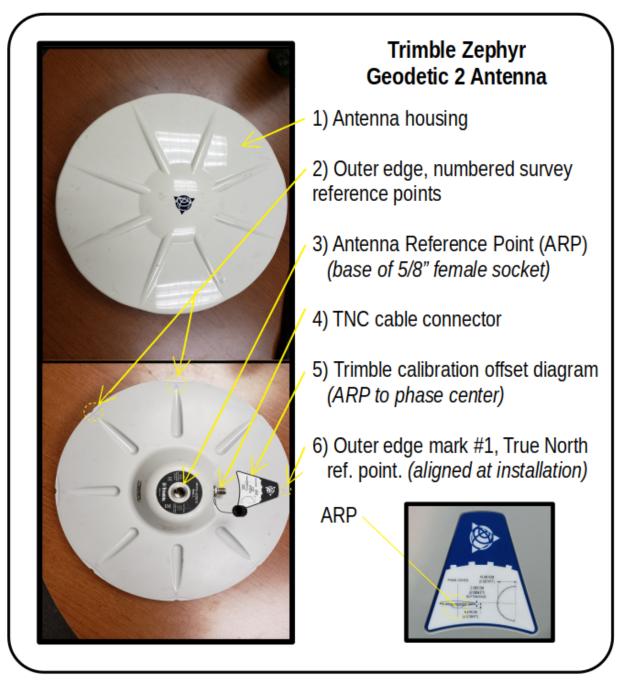


Figure 4. Top and bottom of Zephyr Geodetic 2 antenna.

At all six CO-OPS GNSS stations, a SECO brand Adjustable Tilt Monument Adapter was used to mount the ZG antennas atop a mast, consisting of either 1.5 inch or 2 inch pipe. Figure 5 shows a picture of the SECO adapter and an example field installation. SECO adapter features include:

- A removable brass 5/8 x 11 male stud (threads to antenna base) that is adjustable in azimuth.
- The 5/8 x 11 male stud is held in location by two set screws.
- The adapters are leveled by three adjusting screws with a tilt range of +/- 7 degrees
- The adapter has a female base that is threaded to match the male pipe used.(available in 1.5", 2", 3" MPT, or 5/8 x 11 thread)

Figure 5. SECO adapter.

3.1.4 Receiver Configuration Settings

The starting point for receiver configuration was a standard UNAVCO setup file with GPS and GNSS tracking. UNAVCO configuration files for the Trimble receivers are available from the web site link listed in reference 10. Figure 6 is a capture from the UNAVCO website showing a listing of the available configuration file options for the Trimble receivers. Based on measurement requirements listed in section 2 above, UNAVCO option "A" is used for CO-OPS cGNSS systems.

HOME | ABOUT | CONTACT | HELP

Figure 6. UNAVCO configuration file options for the Trimble receivers.

The UNAVCO configuration clone file is downloaded from the reference website and uploaded to the receiver through the receiver web interface. Figure 7 shows the Trimble receiver web interface home screen that appears upon initial connection (top) and figure 8 shows the programmatic interface home screen.

The UNAVCO configuration clone file is uploaded to the Trimble receiver following these steps:

- Select Receiver Configuration
- Select Application Files
- Choose Upload Install Clone File from the Operation menu.
- Select the configuration file that you would like to upload.
- Select OK

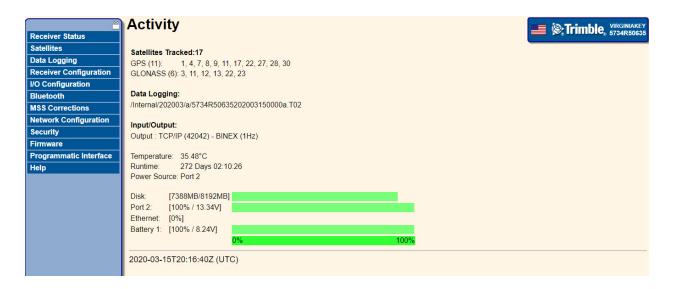


Figure 7. Trimble receiver (NetR9 and Alloy) web interface home screen.

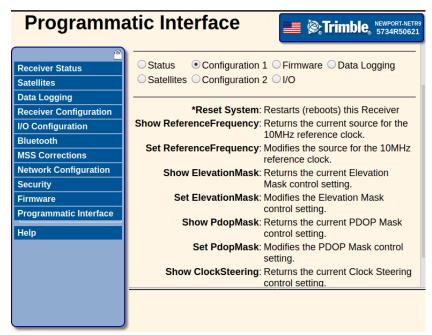


Figure 8. Trimble receiver (NetR9 and Alloy) programmatic interface home screen.

Figure 9 shows the Trimble receiver screen that summarizes the key settings of the UNAVCO standard configuration file.

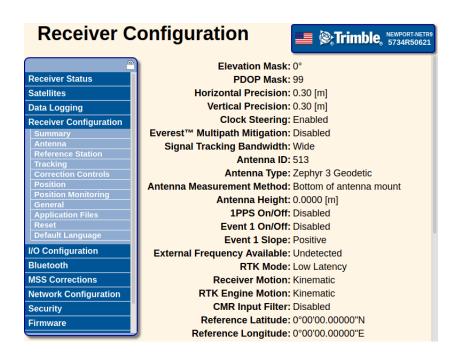


Figure 9. Listing of key settings associated with the UNAVCO standard configuration file.

After uploading the configuration file, several additional features are modified or enabled/disabled through the *Receiver Configuration* menu. Most important is adjusting power to better handle CO-OPS' remote DC powered installations, maximizing battery life and low-power operation. Figure 10 shows adjusted power configuration settings on the *Receiver Configuration -> General* tab.

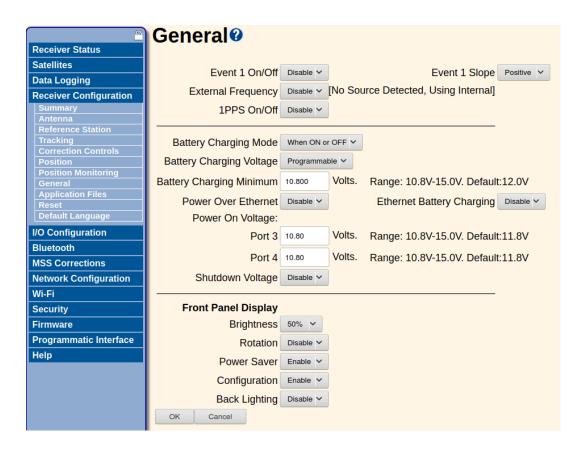


Figure 10. Trimble receiver web interface tab where power configuration settings are adjusted.

3.2 Communications System

As shown in the high level system design schematic at the beginning of section 3 (fig 1), the primary communications component of CO-OPS cGNSS field systems is a cellular gateway, also commonly referred to as an internet protocol (IP) modem. The specific make/model modems used with cGNSS systems are the same models that are employed throughout CO-OPS PORTS and NWLON stations, the Sierra Wireless RV50 and RV50X. CO-OPS' Chesapeake Instrumentation Laboratory (CIL) configures the cGNSS IP modems with the same settings as those used with modems for NWLON and PORTS stations, and with identical security filters installed. All cGNSS stations IP modems are provisioned with Verizon or AT&T. Due to the large file sizes and the unique polling system, a special 5GB data plan must be specified for these devices when provisioning. Figure 11 shows pictures of the RV50 IP modem with key components labelled.

Sierra Wireless RV50

- Cellular antenna port (SMA)
- 2) GPS port (optional) (SMA)
- 3) Power, I/O
- 4) 10/100 RJ45 Ethernet port
- 5) DB9 RS232 serial interface
- 6) Diversity antenna port (SMA)
- 7) USB input
- 8) Network LED
- 9) Signal strength LED
- 10) Network activity LED
- 11) Power LED
- 12) IP Address/MTN

Figure 11. RV50/RV50X IP modem.

The RV50X is designed to withstand harsh industrial conditions and is capable of surviving 5 V brownouts and spikes from -600 VDC to 200 VDC. Its die cast aluminum housing is sealed to meet IP64 standards for resistance to dust and water ingress. The RV50X is tested to meet and exceed the MIL-STD-810G specification for shock, vibration, temperature and humidity. The RV50X is optimized for battery and solar applications, operating at 900 mW in idle mode. More information on power specifications is included section 3.3.

Two antennas are used with RV50 in cGNSS installations: a Digital Antenna PW-1285 Wide band 4G antenna and a dual band paddle diversity antenna.

The Trimble receiver's Network configuration settings selected for IP modem integration are summarized in the NetR9/Alloy web interface screen captures displayed in figure 12.

Ethernet Configuration	Network Configuration
Stored settings	DHCP Status: On
IP Setup: DHCP ▼	Ethernet IP: 192.168.13.100
IP Address: 192 . 168 . 13 . 100	DNS Address: 4.2.2.1
Netmask: 255 . 255 . 255 . 0	Secondary DNS Address: 0.0.0.0
Gateway: 192 . 168 . 13 . 31	HTTP Server Port: 1717
Hostname: NetR9	NAT: Disabled
MTU: 1500	
Force DNS Address: 🗹	
DNS Address: 4 . 2 . 2 . 1	
Sec DNS Addr: 0 . 0 . 0 . 0	
DNS Domain:	
DNS Proxy:	
Change Configuration Cancel	
Hostname: Only alphanumeric and hyphen allowed. Requ	uired to start with letter and end with letter/number.
Renew Drice	DNS Configuration
Current settings	
IP Setup: DHCP	DNS Address: 4.2.2.1 Secondary DNS Address: 0.0.0.0
IP Address: 192.168.13.100	Force DNS Address:
	DNS Address: 4 . 2 . 2 . 1
Netmask: 255.255.255.0	
Netmask: 255.255.255.0 Gateway: 192.168.13.31	Sec DNS Addr: 0 . 0 . 0 . 0
	Sec DNS Addr: 0 . 0 . 0 . 0 DNS Domain: DNS Proxy:
Gateway: 192.168.13.31	Sec DNS Addr. 0 . 0 . 0 . 0 . 0 DNS Domain:

Figure 12. Trimble receiver network configuration settings used for IP modem integration.

3.3 Power System

An estimated power budget for CO-OPS' Trimble based cGNSS field system is summarized in Table1. All results in the table are based on manufacturer specifications, not actual measurements. The systems estimated total average current and daily power load, along with a desire to use some power system components that are standard to NWLON and PORTS inventory, led to the selection of the following power system primary components:

- 2 Powersonic 12400 12VDC, 40 Ah sealed gel batteries (wired in parallel)
- 1 Ameresco 12VDC, 40W solar panel
- 1 ASC 12VDC 8A Solar regulator

As documented in references 1 and 2, during the CO-OPS initial cGNSS design process (in early 2018) a 50W solar panel was recommended for the power system. However, this was guided by a power budget based on specifications of a Sierra Wireless modem model that preceded the RV50 series. Updating the system with the

more efficient RV50 significantly reduced the total system power load, resulting in the selection of the 40W panel.

As summarized in table 1, it is estimated that the cGNSS system could run for approximately 9 days in the event of an unexpected loss of charge, for example during a period of prolonged cloud cover. Also, the Alloy and NetR9 have an additional internal battery installed which would result in an additional 18-24 hrs of operation following the stop of external power supply.

Table 1. Estimated power budget for Trimble based cGNSS field system.

Trimble cGNSS Power B	udget					
		Avera	age Current I	Load		
Item	Current (mA)	Active Time (s/day)	% Active	Ave. Current (mA)	NOTES	
Trimble GNSS Reciever	316	86400	100.00	316.00		
Sierra RV50X active	400	30	0.03	0.14	Active only during polling or remote connec	tion
Sierra RV50X idle	75	86370	99.97	74.97		
				391	Total Average Current (mA)	
		Pow	er Consump	tion		
Power = Total Average C	urrent Times 12	Volts		4.69	Total Average Power (@ 12 V) Watts	
Energy Used Daily = Tota	I Average Powe	r Times 24 Hours		112.64	Total Daily Power Load (Wh)	
Amp Hours Used Daily =	Total Average (Current Times 24 Ho	urs	9.39	Total Daily Ah Usage	
		Ва	ttery Capaci	ty		
Battery Capacity	40	Ah	2X Powerso	nic 12400 12v 40A	Ah	
Quantity	2					
Daily Ah Usage	9.39	Ah/Day	Total Daily A	Ah Usage		
Capacity in Days	9	Days	Capacity div	rided by Usage		

3.4 Cables, Connectors, Wiring

The diagram and table in figure 13 provides a detailed description of all cGNSS station cables, wiring, and connections. Connectors in figure 13 correspond to labelled components in figures 2,3,4, and 11.

Figure 13. cGNSS station cabling and connector diagram.

3.5 Data Telemetry

In accordance with requirements summarized in section 2, the Trimble cGNSS receivers are configured to log GPS and GLONASS satellite track observations at a 30 second sample rate and data are recorded in 24 hour (daily) log files. Log files are in a proprietary Trimble binary format (*.T02 extension).

The daily binary *.T02 files are stored locally on the device and retrieved daily from servers in Silver Spring. A custom HTTPS script, developed by ED and ISD, is used to connect to the GNSS receiver via-internet and transfer files once per day . SSEB is currently researching other protocols for file transfer (FTP Push, SSH and SFTP). These changes will become necessary with our migration to Septentrio receivers, and as NOAA security requirements become more stringent.

Daily binary files are converted to RINEX on CO-OPS servers upon ingestion. Raw binary files and converted RINEX files are all available on a CO-OPS intranet site: https://intranet.nos-tcn.noaa.gov/apps/cdis/gnss/

And a public ftp site:

ftp://tidepool.nos.noaa.gov/pub/outgoing/gnss/

Details of data archival, sharing, and processing will be discussed in a separate document.

4. References

- CO-OPS ED Report Installation of cGNSS at Virginia Key, FL NWLON Station, Jun 2018 https://drive.google.com/file/d/1NxiOWTOcuxl F LmOwUwWFZfAFfQTK-X/view
- 2. CO-OPS ED Report Installation of cGNSS at Galveston, Pier 21, TX NWLON Station Aug 2018 https://drive.google.com/file/d/1WVlospA rSusSH3lvjDsYUX0vDPw D4Y/view
- 3. CO-OPS ED Report Installation of cGNSS at Dhalgren, VA NWLON Station Oct 2018 https://drive.google.com/file/d/1XYmugSnm_zBpeCmQ5pljNKrsCm1Dvta7/view
- 4. CO-OPS ED Report Installation of cGNSS at Newport, RI NWLON Station, Nov 2018 https://drive.google.com/file/d/1gBugcRiAjD4wQETaP7DpcoXHMoLOhNcz/view
- CO-OPS ED Report Installation of cGNSS at San Juan, Puerto Rico NWLON Station, Jul 2019 https://drive.google.com/file/d/1yRBjLNRxYC2nspkyt7lb5HCZY4ASRQx6/view
- CO-OPS ED Report Installation of cGNSS at Pensacola, FL NWLON Station, Aug 2019 https://drive.google.com/file/d/1TSul5pbWV-Ywh56YgCnNmv97WCCLOjN9/view
- Jamieson, Marian & Gillins, Daniel. (2018). Comparative Analysis of Online Static GNSS Postprocessing Services. Journal of Surveying Engineering. 144. 10.1061/(ASCE)SU.1943-5428.0000256.
- CO-OPS ED Report Field Level Survey Procedures for CO-OPS Installed cGNSS (in draft) -Mar 2020
- 9. UNAVCO Trimble NetR9 resources page: https://kb.unavco.org/kb/article.php?id=673
- 10. UNAVCO Trimble Configuration site: https://kb.unavco.org/kb/article/unavco-standard-configuration-file-for-the-netr9-772.html

APPENDIX A - Trimble NetR9 spec sheet

= NetR9

GNSS REFERENCE RECEIVER SERIES

The Trimble NetR9 Global Navigation Satellite System (GNSS) reference receiver series consists of full-feature, top-of-the-line receivers designed to provide network operators with maximum features and functionality from a single receiver platform.

Using the latest generation of Trimble 360 receiver technology in combination with two Trimble Maxwell* 6 chipsets, the Trimble NetR9 reference receiver offers an industry-leading 440 channels for unmatched GNSS multi-constellation tracking performance. With the world's GNSS in constant development, the Trimble NetR9 reference receiver provides the operator with the assurance that it has the capability to grow with the industry, both today, and well into the future.

The Trimble NetR9 reference receiver supports a wide range of satellite signals. Currently, the NetR9 platform is capable of tracking signals from GPS, GLONASS, Galileo³, Beidou, and QZSS constellations. With 440 channels, the NetR9 has the capacity to accommodate additional signals as they may become available, eliminating the need to replace hardware to keep pace with technology³.

The Trimble NetR9 reference receiver supports the new CMRx communications protocol, which provides unprecedented GNSS correction compression for optimized bandwidth and low latency data transmission. Combined, this results in greater data throughput at a lower operating cost.

The Trimble NetR9 reference receiver's compact form factor, low power consumption and powerful network capabilities make for an ideal combination supporting a wide range of high-accuracy positioning applications. A few specific examples include:

- ▶ Trimble VRS™ network receiver
- Mobile field base station
- Academic research
- Continuously Operating Reference Station (CORS)
- Field campaign receiver for post-processing applications
- Use in DGPS MSK beacon systems

 Monitoring integrity of VRS networks, along with other physical infrastructure such as oil platforms, mines, dams, bridges, or other natural and man-made objects where precise deformation is crucial

The Trimble NetR9 reference receiver has eight gigabytes of physical memory built into the circuit board, providing a high level of data protection. Additionally, the use of external USB logging devices is supported providing the Trimble NetR9 reference receiver unparalleled storage capacity and flexibility. Combined with logging of TO2, RINEX, BINEX, and Google Earth formats, factored together with FTP and Email Push technology, the Trimble NetR9 achieves an uncompromised blend of functionality and efficiency.

With stringent environmental specifications and an integrated lithium-ion, the Trimble NetR9 protects to ensure no data is missed. The integrated Li-lon battery can power the Trimble NetR9 continuously up to 15 hours, either as a primary power source or as an emergency backup source.

The Trimble NetR9 reference receiver comes with powerful built-in remote management. Utilizing Internet Protocol (IP) as the primary communications mechanism, the familiar Trimble Infrastructure web user interface provides full receiver status, configuration, firmware updates, data access, as well as a variety of security levels and access controls. Furthermore, the receiver supports Email Alerts so the operator knows exactly what is taking place at the receiver. This includes integrated position monitoring so as to always know if your antenna has moved before it is too late.

For simple hands-on configuration, the Trimble NetR9 reference receiver offers a seven-button, two line display and status information so that performing in-field configuration is practically effortless. Best of all, no handhelds are required to get this job done.

Available in three upgradable configurations (NetR9 Ti-1, Ti-2, and Ti-3) along with one non-upgradable configuration (NetR9 Ti-M), the NetR9 provides the most flexible receiver platform offered to date. With the NetR9 receiver platform's robust functionality, you can trust Trimble to provide the very latest technology in the GNSS industry to help position your way into the future.

Key Features

- Proven GNSS technology from Trimble
- 440 channels for unmatched GNSS tracking performance
- Bluetooth", Ethernet, Serial and USB support
- Position Monitoring and Alerting functionality notifies of any change in antenna position
- Large capacity internal memory plus external USB device logging capability
- Convenient front panel display and configuration
- Power over Ethernet (PoE) technology
- ► Twelve independent logging sessions
- Multiple data file formats
- Integrated battery which can act as a primary power source or as an uninterrupted power supply (UPS) backup
- ▶ Powerful remote configuration and access
- Trimble RTX™ World Wide Correction Service ready

- Developed under a License of the European Union and the European Space Agency.
- Space rightly.

 For more information about Trimble and CNSS modernization please visit http://www.trimble.com/srv_new_era.shtml.

PHYSICAL SPECIFICATIONS

26.5 cm x 13.0 cm x 5.5 cm
(10.43 in x 5.12 in x 2.16 in)
1.75 kg (3.85 lb)
IP67 and MIL-STD 810F
C to +65 °C (-40 °F to +149 °F)
C to +80 °C (-40 °F to +176 °F)
vival: Non-operating 75 g, 6 mS;
ating: to 25 g, 10 ms, sawtooth;
ve a 1 m drop onto hard surface
2.6 g RMS. 7.5 Hz/0.015 g2/Hz; 15 g²/Hz; 500 Hz/0.006 g²/Hz

Non-Operating: 4.3 g RMS. 10 Hz/0.04 g²/Hz; 300 Hz/0.04 g²/Hz; 1000 Hz/0.002 g²/HzIP67; waterproof for temporary Ingress protection immersion to a depth of 1 m (3.28 ft); dustproof

USER INTERFACE

- · Front Panel Display
 - 2-line x 16-character vacuum fluorescent display

 - Advanced power saving modes
 Escape and Enter key for menu navigation
 - 4 arrow keys (up, down, left and right) for scrolling and data entry
 Power button and indication LED
- · Web User Interface
- Secure
- Allows remote configuration, data retrieval and firmware updates
- · Programmatic Interface
 - Allows for open, non-proprietary access, control and configuration

ANTENNA SUPPORT

Output voltage
Maximum output current
Maximum cable loss
Recommended antennas Trimble Zephyr 3 Geodetic**
Trimble GNSS Choke Ring, Trimble GNSS-Ti Choke Ring
Ap25 (for use with Ti M veriant only)

SECURITY

- · Optional HTTP login
- HTTPS
- Real-time stream authentication
- Programmatic interface authentication
- NTRIP

ELECTRICAL

- Power over Ethernet (PoE) 802.3af; requires a Class 3 PoE supply
- 9.5 V DC to 28 V DC input on Lemo port
 User-configurable power-on voltage
- · User-configurable power-down voltage
- Integrated internal battery 7.4 V, 7800 mA-hr, Li-lon; 15 hours of continuous operation, dependent on user settings
 Internal battery operates as a UPS in the event of power source outage
- Seamless switching between external/internal power sources
- · Internal battery will charge from external power source when input voltage is
- Integrated charging circuitry
 Power consumption 3.8 W nominal, dependent on user settings

REGULATORY COMPLIANCE

- · RoHS
- China RoHS
- · FCC Part 15.247 FCC certifications
- Class B Device FCC Part 15 and ICES-003 compliance
- RSS-310 and RSS-210 Industry Canada compliance
- CE mark compliance
- C-Tick mark compliance
 UN ST/SG/AC.10.11/Rev. 3, Amend. 1 (Li-lon battery)
- UN ST/SG/AC.10/27/Add. 2 (Li-lon battery)
- · WFFF

- 1. NetR9 available in four configurations: Tri.1, Tri.2, Tri.3, and Tri.M. Specifications shown reflect full configuration capability. Please core.edit your local distributor for additional information.

 2. There is no public GLONASS L3 CDMA (ICD. The current capability in the receivers is bised on publicly available information. As such, Timble carrier glasarines that these receivers will be fully compatible with a future generation of GLONASS satelibits or signals.

 3. Everlaged under a Losense of the European Union and the European Space Agency.

 4. Current Berlos capability is based on publidy available information. The hardware of this product is daslgred for Belood Be compatibility that wisson) and its firmation will be enhanced, where possible, to this papeor to Federal Berlos capability in the vision is not in this means will be enhanced. Where possible, to this papeor to reside the General Berlos capability of the second production of the second p

- entailed in type apprisons are country specific. Contact your local authorized intrinse distinuition partner to more information.

 In USS device minimum vaccommended specification must support USB 2.0 Hi-Speed with a minimum variae speed of 6 Mips, Solid stalls of their recommended for optimal performance.

 If The internal battley will operate from 20°Cto +55°C (L4°Tto +131°F). The internal battley charger will operate from 0°Cto 45°C, C25°T to 131°F), Althompteabures listed reference the ambient temperatures.

SATELLITE TRACKING

- Two advanced Trimble Maxwell 6 GNSS chipsets for a total of 440 channels
- Trimble EVEREST™ multipath signal rejection
- Trimble 360 receiver technology Trimble R-Track" technology
- · High precision multiple correlator for GNSS pseudorange measurements
- High precision multiple correlator for GNSS pseudorange measurements.
 Unfiltered, unsmoothed pseudorange measurements data for low noise, low multipath error, low time domain correlation and high dynamic response.
 Proprietary Receiver Autonomous Integrity Monitor (RAIM) system to detect and reject degraded signals to improve position quality.
- · Very low noise GNSS carrier phase measurements with <1 mm precision in a 1 Hz bandwidth
- · Signal-to-noise ratios reported in dB-Hz
- · Proven Trimble low elevation tracking technology

- Current satellite signals tracked simultaneously:
 GPS: L1 C/A, L2C, L2E (Trimble method for tracking unencrypted L2P), L5
 GLONASS: L1 C/A and unencrypted P code, L2 C/A and unencrypted P code, L3 CDMA²
 - Galileo³: L1 CBOC, E5A, E5B & E5AltBOC Beidouf: B1, B2, B3

 - QZSS: L1 C/A, L1C, L1 SAIF, L2C, L5, LEX⁵
 - SBAS: L1 C/A (EGNOS/MSAS), L1 C/A and L5 (WAAS/GAGAN)
 L-Band: OmniSTAR VBS, HP and XP
- Trimble RTX World Wide Corrections

INPUT/OUTPUT FORMATS

- CMR, CMR+, CMRx, RTX, RTCM 2.1-3.2 and MSM
- Observables:
 - RT17, RT27, BINEX, RTCM 3.x
- · Position/Status I/O: NMEA-0183 v2.30, GSOF
- Up to 50 Hz Output
- · 10 MHz External Frequency Input
- Normal input level 0 to +13 dBm
 Maximum input level +17 dBm, ±35 V DC
- Input impedance 50 Ohms @ 10 MHz; DC blocked
- · 1 PPS Output
- Event Input
- · Met/Tilt Sensor Support

POSITIONING PERFORMANCE⁶

Code Differential GNSS Positioning Horizontal	0.25 m + 1 ppm RMS
Vertical	
WAAS differential positioning accuracy ⁷	
Horizontal Vertical	
Static GNSS Surveying	
High-accuracy static	
Horizontal	3 mm + 0.1 ppm RMS 3.5 mm + 0.4 ppm RMS
Static & Fast Static	
Horizontal	
Real Time Kinematic Surveying®	
Single Baseline <30 km	
Horizontal Vertical	8 mm + 1 ppm RMS 15 mm + 1 ppm RMS
Networked RTK	
Horizontal	15 mm + 0.5 ppm RMS
Initialization time	typically <10 seconds
Initialization reliability	typically >99.9%

COMMUNICATION

- Serial Ports
 - One D9 Male, EIA-574 RS-232/V.24 Full 9 wire serial
- One Lemo 7 pin Oshell, 3 wire serial with power input, 1 PPS output and
- One Mini B USB 5 pin; supports Device and Host mode operations
- · Bluetooth^o
- Integrated 2.4 GHz Bluetooth; supports 3 simultaneous connections
- Ethernet
- Integrated RJ45 jack
 Full-duplex, auto-negotiate 100Base-T
- Power over Ethernet (PoE) support with a Class 3 PoE supply
- HTTP, HTTPS, TCP/IP, UDP, FTP, NTRIP Caster, NTRIP Server, NTRIP Client
- Proxy server support
- Routing table support
 NTP Server, NTP Client support
- UPnP and Zeroconf support
- Email Alerts and File Push
- Position Monitoring - IP Filtering

DATA LOGGING

ororage capacity	
Onboard memory	8 GB
External memory ¹⁰	greater than 1 TB
File durations	5 minutes to continuous
Storage sessions	12 concurrent independent
sessio	ns with dedicated memory pooling and ring buffers
File formats T02, R	NEX v2.xx, RINEX v3.xx, BINEX, Google Earth KMZ
File naming options	multiple
Data retrieval and transfer	. HTTP, FTP Server, USB, FTP Push and Email Push
Events	definable file protection on events

APPENDIX B - Trimble Alloy spec sheet

THE FUTURE OF GNSS IS HERE

Trimble's all-new Alloy GNSS receiver offers powerful performance with the latest GNSS technology in a sleek new design that is easy and intuitive to use. Whether you need GNSS for campaign work or in permanent installations, the flexible configuration delivers reliable, robust data when and where you need it.

MODERNIZED GNSS TRACKING

Using powerful Trimble 360 receiver technology in combination with dual Trimble Maxwell" 7 chipsets, the Alloy GNSS receiver supports all known and planned GNSS constellations, ensuring your GNSS data is robust and reliable.

INTELLIGENT DESIGN

Review Key Info at a Glance

With a four-line angled display you can read all important information such as satellite tracking, position solution type, data logging, IP address, Wi-Fi*, firmware information and battery status right on the home screen. Set-up and verifying status information is now quick and easy.

Plug in and get to work

Multiple ports are easily accessible without the need for adaptors in a configuration that makes it simple to plug in a variety of external sensors and antennas.

Power when you need it

Alloy provides the most robust power options for any GNSS system. Featuring multiple power inputs with dual hot-swappable batteries, power over Ethernet, and advanced power management features, the Trimble Alloy GNSS receiveris ideal for any GNSS base station deployment.

Stackable Design

With a versatile, stackable design the Alloy GNSS receiver is built with a lightweight rugged aluminum alloy chassis which features IP68 certification. When you need to organize multiple units for deployment, simply stack and prep.

CONFIGURABLE ALERTS 24/7

Using Trimble Sentry™ technology, you can easily configure alerts that will automatically inform you of any changes to the position, data logging, configuration, tracking, power, communications, and system access events. Combined with advanced security measures such as IP filtering and multi-level user access. Trimble Sentry ensures continued operation of your Trimble Alloy GNSS receiver.

TRIMBLE RTX ON BOARD

The Alloy GNSS receiver is available with Trimble RTX" advanced positioning technology allowing for rapid real-time network coordination. Whether this is for base station deployment or monitoring, Trimble RTX remains locked onto your real world absolute position.

COMMUNICATION

The Trimble Alloy GNSS receiver supports a wide range of communication protocols including Ethernet, Bluetooth*, and Wi-Fi for flexible easy access via the built-in Web User Interface and mini-Web User Interface for mobile devices.

DATA

Storage

The Alloy GNSS receiver is able to store more data in less space by using specialized compression formats. Up to twelve independent high-rate data logging sessions can be stored internally, and using USB storag you can be sure the data you collect and store is specific for your application.

Access

Leveraging advanced communication protocols, data can be accessed via the user interface, built in FTP Server, or configured to be pushed to remote FTP sites or email accounts in multiple industry formats.

Benefits

- Dual Trimble Maxwell 7 chipsets combined with a powerful processor provides the ultimate in tracking and processing power
- Ethernet and Wi-Fi support provide ease of access, configuration, and transfer of data. Using the built-in Web user interface gives instant access to a simple to use configuration suite
- Dual hot-swappable internal batteries with integrated charging make Alloy suitable for use in the office or remote locations, and anywhere in-between
- The intelligent design features multiple connectors and stackable housing, making Alloy easy to configure for deployment
- Designed to an IP68 certification Alloy is ready for any environment
- Includes firmware for life so it's easy to keep your Alloy reference receiver up-to-date with the latest features, enhancements and security updates, free to install from www.alloy.trimble.com

SPECIFICATIONS1

GNSS TECHNOLOGY

- Timible RTX World-Wide Corrections
 Advanced Trimble dual Maxwell* 7 GNSS chipset provide 672 channels for Advanced Immore dual Maxwell / GRead cripset p simultaneous satellite tracking Trimble EVERESTPlus " multipath signal rejection

- Trimble 360 receiver technology High precision multiple correlator for GNSS pseudorange measurements

- man precision multiple correlator for GNSS pseudorange measurements
 Spectrum Analyzer to troubleshoot GNSS jamming
 Unfiltered, unsmoothed pseudorange measurements data for low noise, low multipath error, low time domain correlation and high dynamic response
 Very low noise GNSS carrier phase measurements with <1 mm precision in a 1 Hz bandwidth

- Signal to Noise ratio reported in dB-Hz
 Proven Trimble low elevation tracking technology
 Proprietary Receiver Autonomous Integrity Monitor (RAIM) system to detect and reject degraded signals to improve position quality

SATELLITE TRACKING

- GPS: L1 C/A, L2E (L2P), L2C, L5
 GLONASS: L1 C/A² and unencrypted P code, L2 C/A and unencrypted P code, L3 CDMA
- Galileo: L1 CBOC, E5A, E5B & E5AltBOC, E6
- BeiDour B1, B2, B3
- QZSS: L1 C/A, L1C, L1 SAIF, L1S³, L2C, L5, LEX/L6³
 IRNSS: L5, S-Band
- SBAS: L1 C/A (EGNOS/MSAS), L1 C/A and L5 (WAAS)
 L-Band: Trimble RTX^M

INPUT/OUTPUT FORMATS

- Correction Formats:
 CMR, CMR+, CMRx, GAGAN, RTX, RTCM 2.x, RTCM 3.x, SDCM
- Observables:
 RT17, RT27, BINEX, RTCM 3.x

- RT17, RT27, BINEX, RTCM 3.x
 Position/Status I/O:
 NMEA-0183 v2.30, GSOF
 Up to 100 Hz Output
 10 MHz External Frequency Input
 Normal input level 0 to +13 dBm
 Maximum input level +17 dBm, ±35 V DC
 Input impedance 50 Ohms @ 10 MHz; DC blocked
 1 PPS Output

- Event Input
 Met/Tilt Sensor Support

POSITIONING PERFORMANCE

Differential Positioning

Code differential GNSS positioning* Horizontal Vertical SBAS differential positioning accuracy*	
Horizontal Vertical	
Static GNSS Surveying ⁵	
High Accuracy Static Horizontal Vertical Static & Fast Static	
Horizontal Vertical	
Real Time Kinematic Surveying ⁵	
Single Baseline < 30km Horizontal Vertical	
Networked RTK' Horizontal Vertical Initialization time Initialization reliability	typically <10 seconds

COMMUNICATION

- Serial Ports:
 Two 9-pin Male
- Two 7-pin Lemo
 USB: one Mini-B USB 5-pin / RDNIS (Device and Host modes)
 USB: one Mini-B USB 5-pin / RDNIS (Device and Host modes)
 Ethernet: one R145 (Full-duplex, auto-negotiate 100Base-T)
 HTTP, HTTPS, TCP/IP, UDP, FTP,NTRIP Caster, NTRIP Server, NTRIP Client
 Proxy server, Routing table, NTP Server, NTP Client support
 Email Alerts and File Push
- WiFi: 802.11 b/g, access point and client mode, WPA/WPA2/WEP64/WEP128
- encryption

 Bluetooth*: Integrated 2.4 GHz Bluetooth; supports 3 simultaneous connections

Depends on WAAS/ECNOS system performance.
 Networked RTK PPM values are reference to the closest physical base station.
 Bluebooth type approvals are country specific.

DATA LOGGING

Storage Capacity: Onboard Memory (Journaling) up to 24 GB ^o External Memory ^{to} greater than 1 TB
Maximum Data Logging Rate
Storage Sessions
File Formats T02, T04, BINEX, RINEX v2.x/3.0x, Google Earth KML/KMZ
File Naming Conventions . Google Earth KML/KMZ File Naming Conventions . Multiple Data Retrieval and transfer . HTTP, FTP Server, USB Events . Definable file protection on events

PHYSICAL SPECIFICATIONS

I III OICAL OI LOII ICATIONO	
Alloy receiver dimensions (W x L x H L x W x H)	20.98 cm x 21.36 cm x 7.62 cm
	(8.41 in x 8.26 in x 3 in)
Alloy receiver dimensions	
with brackets attached (L x W x H)	26.77 cm x 21.36 cm x 8.3 cm
	(8.41 in x 10.54 in x 3.27 in)
Weight	2.34 kg (5.17 lbs)

ENVIRONMENT

Operating Temperature" -40 °C to +65 °C (-40 °F to +14 °S forage temperature Storage temperature -40 °C to +80 °C (-40 °F to +17 °S forage temperature Humidity 100% condens Shock -40 °C to +80 °C (-40 °F to +17 °S for condens	5F)
Operating .40 g per MIL-STD-810G Table 5.166 Non-Operating 75 g per MIL-STD-810G Table 5.166 Designed to survive Im bench of	-VIII -VIII rop
Vibration	
Operating MIL-STD-810G Fig. 5.14.6C-1 Catego Ingress protection IPG8 Certified per IEC-605 waterproof/dustproof (Im submersion for 1	y 4 29 - hr)

USER INTERFACE

- Front Pane Display
 4-line x 32 character reversible OLED display
 7-button input configuration
 Adjustable LED backlighting
 Multiple language support for front panel and web UI Chinese, Dutch, English, Finnish, French, German, Italian, Japanese, Norwegian, Polish, Portuguese, Russian, Carminis, Countries Finnish, Trench, German, Italian, Japanese, Norwegian, Polish, Portuguese, Russian, Spanish, Swedish
 Web User Interface: Allows remote configuration, data retrieval, and firmware updates over HTTPS/HTTP

ANTENNA SUPPORT

Output Voltage		5 V DC nominal
Maximum output current		
Maximum cable loss		
Recommended antennas		
	frimble GNSS-Ti v2 Choke Ri	ing, Trimble GNSS Choke Ring

SECURITY

- · HTTP login
- HTTPS/SSL
 Programmatic Interface authentication
 NTRIP
 IP Filtering

ELECTRICAL

- Power over Ethernet (PoE) 802.3af (Type 1), 802.at (Type 2)
 9.5 to 28 V DC input on 2 Lemo ports

 User-configurable power-on voltage
 User-configurable 2 power-down voltage
 User-configurable 2 DC power output on serial port #2
 Integrated dual hot-swappable smart batteries (7.4 V, 7800 mA-hr, Li-lon batteries) with up to 15 hours of continuous operation

 Securiless switching between external power sources.

- with up to 20 notices of continuous operation

 Seamless switching between external/internal power sources

 Configurable minimum input voltage for battery charging

 Integrated battery charging circuity

 Power Consumption 3.8 W or higher, dependent on user settings

REGULATORY COMPLIANCE

- FOC Part 15 (Class B device), CISPR 32, 24
 RED CE Mark
- RCM
 UN 38.3 ST/SG/AC.10/27/Add.2 Rev.5 (Li-lon battery)
 IEC 62133(Ed.2) and EN 62133: 2013 (Li-lon battery)
 RoHS, China RoHS, WEEE

9 Transle's highly efficient TO2 data logging format makes this equivalent to 32 GB to 55 GB for competitive receivers.
10 Solid state drives are recommended for optimal performance.
11 To protect the reheated L-LOYQ butteries from extreme temperatures, the internal battery charges only charges butteries from 20 to 45 GL-47 to 122 PT.

APPENDIX C - Zephyr Geodetic antenna spec sheet

	Trimble Zephyr 3 Geodetic Antenna	Trimble GNSS-Ti v2 Choke Ring Antenna	Trimble GNSS v2 Choke Ring Antenna
Minimum tracking elevation	0 Degrees	O Degrees	O Degrees
Practical tracking elevation	<3 Degrees	<5 Degrees	<5 Degrees
Supported positioning signal bands	L1/L2/L5/G1/G2/G3/E1/E5ab/E6/ B1/B2/B3	L1/L2/L5/G1/G2/G3/E1/E5ab/E6/ B1/B2/B3	L1/L2/L5/G1/G2/G3/E1/E5ab/E6/ B1/B2/B3
Supported SBAS signal bands	WAAS, EGNOS, QZSS, Gagan, MSAS, OmniSTAR*, RTX**	WAAS, EGNOS, QZSS, Gagan, MSAS, OmniSTAR, RTX	WAAS, EGNOS, QZSS, Gagan, MSAS, OmniSTAR, RTX
Phase-center accuracy	2 mm or better	2 mm or better	2 mm or better
Phase-center repeatability	<1mm	<1mm	<1mm
Maximum phase-center eccentricity	2 mm	2 mm	2 mm
Antenna gain	50 dB ±2dB	50 dB ±2dB	50 dB ±2dB
LNA features	Trimble's advanced second generation filtering to reduce interference by nearband transmitters	Trimble's advanced second generation filtering to reduce interference by nearband transmitters	Trimble's advanced second generation filtering to reduce interference by rearband transmitters
LNA signal margin	13 dB	13 dB	13 dB
Supply voltage	35VDC to 20VDC	3.5 V DC to 20 V DC	3.5 V DC to 20 V DC
Supply current (maximum)	125 mA	125 mA	125 mA
Power consumption (maximum)	440 mW - 700 mW	440 mW - 700 mW	440 mW - 700 mW
Dimensions	34.3 cm diameter x 9.3 cm height 13.5 in diameter x 3.66 in height	38 cm diameter x 14.6 cm height 15 in diameter x 5.75 in height	38 cm diameter x 14 cm height 15 in diameter x 5.5 in height
Weight	1.36 kg (3 lb)	4.3 kg (9.5 lb)	4.3 kg (9.5 lb)
Element type	Dual four-point-feed patch	Dual four-point-feed patch	Phase-ripple-tested Dorne & Margolin Alt. C-146
Polarization	Enhanced right-hand circular	Enhanced right-hand circular	Right-hand circular
Axial ratio	2 dB at Zenith	2 dB at Zenith	2 dB at Zenith
Voltage Standing Wave Ratio	2.0 maximum	2.0 maximum	2.0 maximum
Left-hand circular polarization (LHCP)	20 dB minimum	20 dB minimum	20 dB minimum
RoHS compliant	Yes	Yes	No
Multipath mitigation technologies	LHCP rejection and resistive ground plane	LHCP rejection and 1/4 wave choke ring ground plane	LHCP rejection and 1/4 wave choke ring ground plane
Ground plane design	Trimble Stealth resistive	JPL designed 1/4 wave choke ring	JPL designed 1/4 wave choke ring
Coaxial connector	TNC Fernale	N Female	N Female
External radome	46291-00 available	59314 available/recommended	59314 available/recommended
Shock rating	2 m (6.56 ft) drop	1 m (3.28 ft) drop	1 m (3.28 ft) drop
Vibration rating	MiL-STD-810-F on each axis	4.3 GRMS, random vibration profile; Z axis only	4.3 GRMS, random vibration profile; Z axis only
Humidity	100% humidity proof, fully sealed	100% humidity proof, fully sealed	100% humidity proof, fully sealed
Temperature Operating Storage	-55 °C to +85 °C (-67 °F to 185 °F) -55 °C to +85 °C (-67 °F to 185 °F)	-55 °C to +85 °C (-67 °F to 185 °F) -55 °C to +85 °C (-67 °F to 185 °F)	-55 °C to +85 °C (-67 °F to 185 °F) -55 °C to +85 °C (-67 °F to 185 °F)
Mounting thread	5/8*-11 Female	5/8"-11 Female	5/8*-11 Female

Appendix D - RV50 Datasheet

Sierra Wireless AIRLINK RV50X

	Specification		Specification
HOST INTERFACES	10/100/1000 Ethernet (RJ45)	SATELLITE NAVIGATION (GNSS)	12 Channel GPS and GLONASS Receiver
	RS-232 serial port (DB-9)	(GNSS)	Acquisition Time: 1 s Hot Start
	USB 2.0 Micro-B Connector		Accuracy: <2 m (50%), <5 m (90%)
	3 SMA antenna connectors (primary, diversity, GPS)		Tracking Sensitivity: -145 dBm
	Active GPS antenna support		Reports: NMEA 0183 V 3.0, TAIP, RAP, XORA
INPUT/OUTPUT	Configurable I/O pin on power connector		Multiple Redundant Servers
111 017 0011 01	Digital Input ON Voltage: 2.7 to 36 VDC		Reliable Store and Forward
	Configurable Pull-up for dry contact input	NETWORK MANAGEMENT	Secure network management applications
	 Digital Open Collector Output > sinking 500 mA Analog Input: 0.5-36 VDC 	MANUAGE MENT	available in the cloud or licensed plat form in the enterprise data center
			Fleet wide firmware upgrade delivery
LAN(ETHERNET/USB)	DNS, DNS Praxy		Router configuration and template management
	DHCP Server		Router staging over the air and local Ethernet connection
	IP Passthrough		Over-the-air software and radio module firmware updates
	VLAN		Device Configuration Templates
	Host Interface Watchdog PPPoE		Configurable monitoring and alerting
SERIAL	TCP/UDP PAD Mode	-	Remote provisioning and air time activation (where
SERIAL		CATEMAY MAANACEMENT	applicable) ALMS
	Modbus (ASCII, RTU, Variable) ppp	GATEWAY MANAGEMENT INTERFACES	Local web user interface
	DNP3 Interoperability		AT Command Line Interface (Telnet/SSH/Serial)
NETWORK AND ROUTING			SMS Commands
14ETWORK PAUD ROOTING	Port Forwarding		SNMP
	Host Port Routing		
	NEMO/DMNR	POWER	Input Voltage: 7 to 36 VDC
	VRRP		LTE Idle Power: 900mW (75 mA @ 12VDC)
	Reliable Static Route		Standby Mode Power: 53 mW (4.4 mA @ 12 VDC) triggered on low voltage, I/O or periodic timer
	Dynamic DNS		Low voltage disconnect to prevent battery drain
	Policy Routing		Built-in protection against voltage transients including 5 VDC
	Verizon ANTM		engine cranking and +200 VDC load dump
	IPv6 Gateway		Ignition Sense with time delay shutdown
VPN	IPsec, GRE, and OpenVPN Client		Configurable features and ports to optimize power
	Up to 5 concurrent tunnels	ENVIRONMENTAL	Operating Temperature: -40°C to +70°C / -40°F to +158°F
	Split Tunnel		Storage Temperature: -40°C to +85°C / -40°F to +185°F
	Dead Peer Detection (DPD)		Humidity:90% RH @ 60° C
DIENTS ENGINE	Multiple Subnets		Military Spec MIL-STD-8 10G conformance to shock,
EVENTSENGINE	Custom event triggers and reports		vibration, thermal shock, and humidity
	Configurable interface, no programming		IP64 rated ingress protection
	Event Types: Digital Input, Network Parameters, Data Usage, Timer, Power, Device Temperature and Voltage	INDUSTRY CERTIFICATIONS	Safety: IECEE Certification Bodies Scheme (CB Scheme), UL 60950
	Report Types: RAP, SMS, Email, SNMP Trap, TCP (Binary, XML, CSV)		Vehicle Usage: E-Mark (UN ECE Regulation 10.04), ISO7637-2, SAE J1455 (Shock & Vibration)
	Event Actions: Drive Relay Output		Hazardous Environments: Class 1 Div 2
DIMENSIONS	1 19 mm x 34 mm x 85 mm (94 mm including connectors)		Environmental: RoHS, REACH, WEEE
	4.69 in x 1.34 in x 3.35 in (3.70 in including connectors)	SUPPORT AND WARRANTY	Includes 1st Year AirLink Complete:
SECURITY	Remote Authentication (LDAP, RADIUS, TACACS+)	DUARRAINTE	AirLink Management Service (ALMS)
	DMZ		 Direct 24/7 Technical Support
	Inbound and Outbound Port filtering		 3-year standard warranty; optional 2-year warranty
	Inbound and Outbound Trusted IP		extension 1-day Accelerated Hardware Replacement available through
	MAC Address Filtering		participating resellers
	PCI compatible	ACCESSORIES	In the Box: DC Power Cable and Quick Start Guide
APPLICATION FRAMEWORK	ALEOS Application Framework (AAF)		Other Accessories (sold separately): 2000579 AC Adapter, 12VDC
FRAMEWORK	LUA Scripting Language		2000579 AC Adapter, 1 2VDC 6000659 DIN Rail Bracket
	Eclipse-based IDE		For antenna options visit: sierrawireless.com/antennas
	Integrated with AirVantage®		
	Dual-Core Processing		